Skip to contents

All functions

IntInjectionIntensity() Inv_IntInjectionIntensity()
Injection Rate function calculations
Int_ETAS_time_trig_function()
Integrated Omori's law
Inv_Int_ETAS_time_trig_function()
Inverse of integrated Omori's law
It_df()
Function to calculate the integral of Omori's law
Temporal.ETAS()
Function to fit Hawkes process model
Temporal.ETAS.fit()
Fits the remporal ETAS model and returns the results. This function decomposes the input.list for the `Hawkes.bru2“ function.
Temporal.ETAS.forecast()
Title
breaks_exp()
Find breaks point for 1D grid
compute_grid()
Function to compute the integral of Omori's law efficiently
cond_lambda()
ETAS conditional intensity - used by inlabru
create_input_list_temporal_noCatalogue()
Function to create a default input list for the ETAS Hawkes temporal model where no catalogue is specified in the input file
create_input_list_temporal_withCatalogue()
Function to create a default input file for the ETAS Hawkes temporal model where a catalogue is specified in the input file.
exp_t()
Copula transformation from a standard Normal distribution to an Exponential distribution
gamma_t()
Copula transformation from a standard Normal distribution to a Gamma distribution
generate_temporal_ETAS_synthetic()
Generates a synthetic catalogue using the ETAS model
get_posterior_N()
Plot the posterior distribution of the expected number of events
get_posterior_param()
Retrieve posterior distribution of ETAS parameters
gt()
ETAS triggering function - used by inlabru
horus
HORUS Ita Catalogue
inv_exp_t()
Copula transformation from an Exponential to a standard Normal distribution
inv_gamma_t()
Copula transformation from an Gamma to a standard Normal distribution
inv_loggaus_t()
Copula transformation from an Log-Normal to a standard Normal distribution
inv_unif_t()
Copula transformation from an Uniform to a standard Normal distribution
lambda_N()
Calculate the integral of the ETAS conditional intensity
log_Lambda_h()
Logarithm of the integral of the ETAS triggering function
loggaus_t()
Copula transformation from a standard Normal distribution to a Log-Normal distribution
omori()
Function to calculate Omori's law
omori_plot_posterior()
Function to plot Omori's law corresponding to different posterior samples
omori_plot_prior()
Function to plot Omori's law corresponding to different prior samples
post_pairs_plot()
Plot the posterior densities of the ETAS parameters
post_sampling()
Sample from the posterior of the ETAS parameters
sample_GR_magnitudes()
Return a sample of magnitudes drawn from the GR distribution
sample_temporal_ETAS_daughters()
Generate a sample of new events data.frame(t_i, M_i) of length n.ev for one parent event occuring at time t_h using the ETAS model.
sample_temporal_ETAS_generation()
Take all previous parent events from Ht=data.frame[ts, magnitudes] and generates their daughters events using the ETAS model
sample_temporal_ETAS_times()
Sampling times for events triggered by a parent at th according to the ETAS triggering function
sample_temporal_injection_events()
Title
time_grid()
Generate a set of time bins for a specific event.
triggering_fun_plot()
Function to plot the ETAS triggering function corresponding to different posterior samples
triggering_fun_plot_prior()
Function to plot the ETAS triggering function corresponding to different prior samples
unif_t()
Copula transformation from a standard Normal distribution to a Uniform distribution