Inverse of integrated Omori's law
Usage
Inv_Int_ETAS_time_trig_function(theta, omega, th)
Arguments
- theta
ETAS parameters list(mu=mu, K=K, alpha=alpha, c=c, p=p)
- omega
Value of the integral to be inverted, vector
- th
Time from which the integral is calculated scalar
Value
Value of the start of the temporal domain used to calculate the integral
Details
Considering the integral of Omori's law
$$\omega = \int_{t_h}^{T_2}\left(\frac{t - t_h}{c} + 1\right)^{-p} dt$$
The function applied to the value \(\omega\) returns the value of \(t_h\).